
S7 Table.  Common RNA-seq analysis questions and their answers. 
The following table summarizes a list of commonly asked questions relating to RNA-seq 
analysis with links to BioStar [90] posts where these questions have been addressed by the 
community. 
 

Question BioStar posts with answer 

Where can I find a list of 
RNA-seq analysis review 
papers? 

https://www.biostars.org/p/52152/  
 
In addition to the biostars link provided we have created a 
resources page that contains many useful papers and other 
RNA-seq references at: www.rnaseq.wiki.  
 

General discussion of RNA-
seq analysis pipelines and 
best practices 

https://www.biostars.org/p/6615/  
 
In addition to the BioStar URL, we provide additional 
references relating to analysis pipelines and best practices in 
S8 Table. 

Should I include biological 
replicates in my RNA-seq 
experimental design?  If so, 
how many? 

http://www.biostars.org/p/1161/ 
http://www.biostars.org/p/68885/ 
 
Yes.  RNA-seq can be used to quantify transcript levels from 
a sample.  In order to perform useful statistics, one sample is 
insufficient.  Replicates must be used to appropriately power 
such statistics.  The RNA-seq method is an impressive 
advancement with many applications for studying RNA 
biology but it does not eliminate biological variability.  If the 
input samples are heavily degraded or have very low input 
amounts it may also be advisable to include certain types of 
technical replicates (e.g., making multiple libraries from each 
sample).  Some studies have shown that for differential 
expression analysis, use of additional biological replicates 
holds greater value than greater depth once you achieve 10M 
reads per samples [277] 

How much RNA-seq data 
should I generate?  How 
much total coverage do I 
need? 

https://www.biostars.org/p/65501/ 
 
The question of how much coverage is necessary for an 
experiment is very difficult to answer and depends on 
experimental goals [278].  A common target used at our 
center is that at least 10,000 transcripts have at least >20x 
coverage over at least 50% of their known exon-exon 
junctions.  This is usually obtained by a 200-300 million read 
run of 1-2 lanes of Illumina HiSeq data (40-100 Gb).  The 
ENCODE consortium and other large-scale sequencing 
initiatives have also published guidelines on this question (S3 
Table). 



 
A more precise answer to this question depends on a number 
of factors, but the most important of these is the analytical 
question being asked of the data [278].  For example, the 
experiment may call for gene expression estimates, de novo 
transcriptome assembly, alternative expression analysis, or 
fusion detection.  Published reports have argued that as little 
as 10 million reads are sufficient for gene expression 
estimation for each sample [277].  While there are clear 
statistical benefits to additional samples at the expense of 
deeper data on each sample [53, 67], these estimates often 
assume that gene expression estimates are the only desired 
output of an RNA-seq experiment.  Fusion detection, 
alternative expression analysis and other analysis strategies 
place higher demands on library depth for each sample.  The 
optimal target sequence depth may also depend on the tissue 
type being profiled, method of RNA isolation, quality of input 
RNA, library construction method, and other experimental 
design factors (S3 Table).  Furthermore, sequencing 
parameters such as read length or choice of paired versus 
unpaired read types influence read alignment efficiency and 
therefore may influence the total amount of read data needed.  
Given the number of factors involved, there is no single right 
answer as to the amount of RNA-seq data needed.  One 
strategy for setting this experimental design parameter is to 
base the decision on comparison to existing publications with 
similar goals.  A more reliable approach is to determine 
analysis goals, identify metrics that measure the desired 
output (genes detected, exon-exon junctions resolved, etc.) 
and conduct a pilot experiment where a small subset of your 
libraries is sequenced deeply.  The resulting data can then be 
analyzed, saturation curves produced and the amount of data 
needed can be determined by a return on investment analysis 
[269].   

How do I assess the quality 
of an RNA-seq library? What 
tools are available? 

https://www.biostars.org/p/103090/  
 
Initially, RNA-seq quality control is performed in the lab by 
evaluating the RIN value of a starting RNA sample (e.g. RIN > 
6), insert size distribution of the library (e.g. within target size 
and not too many fragments below 200 bp) as well as 
requiring a minimum library concentration before sequencing 
(e.g. >5 ng/ul) (Fig. 3, S3 Table, and S1 Data).  Sequence 
instrument quality is usually included in the software provided 
by the instrument vendor.  Common measures of instrument 
QC are the base quality, nucleotide distributions across the 
run over time and spatial distributions of base quality and 
nucleotides within the sequencing media (e.g., flowcell).  After 
sequencing of the library, generic quality control programs for 



sequencing data include: samtools, FastQC, BAMstats and 
SAMstat (see Raw data QC in S2 Table).  Pre-alignment QC 
involves an assessment of the nucleotides sequenced and 
the over representation or bias of nucleotides within the read.  
Standard DNA quality values differ for RNA-seq in this regard.  
For example, the GC content of the transcriptome will have a 
different distribution than the whole genome.  Depending on 
the transcripts expressed in the sample, the sequenced GC 
content can also vary by sample.  After alignment, the 
simplest RNA-seq QC is an assessment of unique and multi-
mapped reads.  TopHat and most RNA-seq aligners produce 
summary metrics about the output alignments in addition to 
the aforementioned tools.  Additional important RNA-seq 
specific QC metrics include the amount of sequence 
generated that aligns to coding regions, ribosomal genes and 
splice junctions.  Picard’s CollectRNASeqMetrics tool is very 
useful for RNA-seq QC.  The junctions.bed file from TopHat is 
also useful for determining the sequence coverage of known 
and/or novel splice junctions.  Many additional metrics for 
evaluating RNA-seq data quality have been developed [103], 
also see Post-alignment QC in S2 Table. 

Should I trim RNA-seq 
reads.  What trimming tool 
should I use? 

https://www.biostars.org/p/84305/ 
 
Read trimming may be advisable in certain circumstances 
depending on the results of QC analysis of the data.  For 
example, if there is a considerable drop in base quality near 
the 5’ end of the reads, then quality trimming can be used to 
remove bases with an increased probability of containing 
errors.  If too many errors are present at the ends of reads 
this may reduce overall alignment rates.  If the RNA-seq 
library contains cDNA inserts that are shorter than the target 
read length, sequencing may run into the sequencing 
adapters used by the sequencing platform.  These sequences 
may prevent reads from mapping to the reference genome.  
These reads can be fixed by adapter trimming with the known 
sequence of each sequencing adapter.  Finally, if the RNA-
seq library construction procedure involved an amplification 
step that required addition of an additional adapter sequence 
(e.g., T7 promoter or SPIA adapter) then additional adapter 
trimming may be advisable.  Several read trimming tools are 
available for next generation sequence data including: 
Skewer [57] and Trimmomatic [58]. 

What is 3’ end bias and how 
might it complicate 
interpretation of expression 
estimates? 

http://seqanswers.com/forums/showthread.php?t=9839 
https://www.biostars.org/p/102812/  
 
It is difficult to produce a library with perfectly uniform 
coverage of RNA-seq reads across the entire length of 



 transcripts.  For example, base positions at the extreme ends 
of transcripts tend to be slightly underrepresented at both the 
5’ and 3’ end because there are less cDNA fragments that 
can be generated from the ends that would cover these 
positions than in the center of a transcript [279].  The term 3’ 
end bias in the context of RNA-seq refers to an 
overrepresentation of read sequences derived from the 3’ end 
of transcript.  This bias towards sequencing the 3’ ends of 
transcripts can be introduced by certain library construction 
strategies.  In particular if the starting RNA is degraded (or 
becomes degraded during sample preparation) and the 
sample is then subjected to polyA enrichment, this will 
introduce 3’ end bias [49].  If the level of RNA degradation is 
high, the resulting sequence can be almost entirely focused 
on the 200-400 bases at the 3’ end of each transcript.  Tools 
such as Picard can produce visualizations and specific 
metrics to assess the degree of end bias in an RNA-seq data 
set and specific methods have been proposed to correct for 
positional bias in RNA-seq expression estimation [279].  

Where do I obtain reference 
genome sequences (FASTA 
files) for my species of 
interest?  

https://www.biostars.org/p/1796/  
https://www.biostars.org/p/103359/  
 
Reference genome sequences are generally obtained as a 
set of FASTA sequences representing the results of a 
genome sequencing and assembly initiative.  The assembly 
consists of multiple contig sequences that each represent an 
entire chromosome or pieces of chromosomes depending on 
the degree of completion of the genome assembly.  There will 
often be multiple versions of the genome assembly that 
represent ongoing improvements (e.g., hg17, hg18, hg19 for 
homo sapiens).  Many species have a dedicated reference 
genome consortium and may operate an independent data 
portal where these sequences can be downloaded.  
Furthermore UCSC, Ensembl, and NCBI each act as 
centralized portals where reference genome sequences can 
be obtained for multiple species.  Finally, the iGenomes 
project is hosted by Illumina and attempts to provide 
reference sequences that have been pre-indexed and 
organized for certain RNA-seq analysis workflows. 

Where can I obtain 
reference transcript 
sequences (GTF files) for my 
species of interest? 

https://www.biostars.org/p/108359/  
 
Transcriptome databases contain predicted and/or 
experimentally validated RNA transcript sequences that have 
been annotated against the reference genome sequence to 
resolve exon/intron boundaries.  Additional functional 
annotations may also be available for each transcript 
sequence or gene locus.  Transcript sequences are often 



made available as a FASTA file and annotations of those 
transcripts against the reference genome (including exon 
coordinates on the reference genome) will be provided as a 
GTF or GFF file (S6 Table).  The same organizations 
described in the previous question that make the reference 
genome sequences available also make these transcriptome 
databases available for download. 

Which aligners are optimized 
for RNA-seq and which 
should I use? 
 

https://www.biostars.org/p/60478/ 
 
TopHat [84, 109] is a popular choice for RNA-seq alignment.  
STAR [110] is an alternative that produces similar alignments 
more quickly.  If reads are being aligned against a reference 
genome sequence, the aligner used should be a gapped 
aligner that is aware of splicing patterns for the species being 
sequenced.  If reads are being aligned directly to a database 
of transcript sequences, a faster aligner that is not splice 
aware may be used.  Many alternatives to TopHat are 
available [59], each with their own benefits and shortcomings.  
A large list of such aligners is maintained at the EBI HTS 
aligner list (rna-seq aligners are indicated in red) [118].  
 
The optimal alignment strategy depends on read length and 
the availability or choice of reference sequences that the 
reads are being aligned to.  If read lengths are sufficiently 
long (>75 bp) and they are being aligned to a reference 
genome sequence, a gapped or ‘splice aware’ aligner such as 
TopHat [84, 109], STAR [110], MapSplice [113], GSNAP 
[280], HISAT or others should be used for a eukaryotic 
species where exon sequences may be separated by large 
introns that must be resolved during alignment.  If read 
lengths are < 50 bp it may be advisable to use an ungapped 
aligner like BWA or Bowtie to align reads to a reference 
genome combined with an exon-exon junction database [3].  
In this strategy, the junction database should be tailored to 
read length.  In the absence of a reference genome 
sequence, RNA-seq reads can be aligned directly to a 
database of transcript sequences using an ungapped aligner.  
In the absence of a reference genome sequence or reference 
transcriptome database, de novo transcriptome assembly 
may be attempted with tools such as Trans-ABySS [9] or 
Trinity [10].  For some species such as human, the reference 
genome and transcriptome resources available are of high 
quality, having been created by extensive efforts involving 
gold standard sequencing and analysis techniques.  Use of a 
reference genome and transcriptome to guide and inform the 
analysis is highly recommended where possible.  De novo 
assembly and de convolution of alternative isoforms are 
difficult problems compared to alignment of reads to a high 



quality reference genome sequence and comparison to a 
database of known transcripts [11].  De novo transcriptome 
assembly may be used to compliment transcript discovery 
workflows that are guided by existing reference genome and 
transcriptome sequences.  If these resources do not exist for 
a particular species, their creation should be considered a 
high priority. 

Is one alignment strategy 
sufficient for all downstream 
analysis needs? 

Unfortunately, some tools for certain RNA-seq analysis 
applications have been carefully tuned to expect certain very 
specific alignment strategies.  For example, one transcript 
abundance tool might expect alignments performed against a 
reference genome sequence while another might expect 
alignments performed against a database of transcript 
sequences.  Fusion detection algorithms may rely on 
alignments that report many alternative alignments.  Mutation 
calling tools might expect a BAM with duplicates marked 
while most other applications will not be affected by or require 
duplicate marking.  Some RNA-seq aligners do not report 
small insertions or deletions very well and this will interfere 
with detecting variants of this type.  Some aligners may not 
report alignments that span across two chromosomes, and 
this will also prevent detection of fusions.  For these reasons 
and more one should consider carefully the alignment 
requirements of each analysis application and accept the 
reality that aligning the same data more than once by different 
methods might be a necessity in a comprehensive analysis 
pipeline. 

Should I allow multiple 
alignments for each read? 

The answer to this question depends on the application.  In 
DNA analysis it is common to use an alignment strategy that 
randomly selects one alignment from a series of equally good 
alignments.  In RNA-seq analysis this is less common.  When 
aligning RNA-seq reads against a transcript sequence 
database, multiple equally good alignments will be expected 
for genes with several isoforms that share common 
sequences.  Some transcript abundance estimation tools 
(e.g., Cufflinks [8]) specifically expect to use multiple 
mappings to a transcriptome or genome sequence in their 
estimations.  Correctly representing the uncertainty of 
mapping for reads that correspond to multiple isoforms or 
regions of the genome has been found to increase the 
accuracy of transcriptome abundance estimation [281, 282].  
In other words, allowing more multiple alignments is desirable 
in this context, though it will increase the size of RNA-seq 
BAM files.  Similarly, in gene fusion discovery, allowing a 
larger number of alignments for each read can improve the 
ability of the fusion detector to correctly identify false positive 
fusions.  One use case where one might choose to ignore 



multi-mapped reads is when performing mutation discovery 
with RNA-seq data.  In this application, it might be best to 
align reads to the genome with an accurate gapped aligner 
and assign multi-mapped reads a mapping quality of 0 so that 
they can be easily ignored by variant callers interrogating the 
BAM file.  

Why are there so many 
RNA-seq alignments within 
intronic regions? 

https://www.biostars.org/p/42890/  
 
RNA-seq alignments within intron regions can occur for 
various reasons [283].  First, while it is typical to perform 
DNAse treatment of RNA samples prior to library 
construction, these treatments are not complete and some 
intronic reads may represent genomic DNA that was not 
successfully removed or degraded.  Second, RNA samples 
will typically contain a mixture of nuclear and cytoplasmic 
RNA.  RNA from the nucleus may be incompletely processed 
heteronuclear RNA (hnRNA).  hnRNA may contain introns 
that have not yet been spliced out.  Third, random 
transcription events can happen anywhere, including within 
introns.  Fourth, splicing errors or biologically significant 
alternative splicing may result in isoforms with retained 
introns.  Fifth, the read may be misaligned to the intron.  
Sixth, if the RNA-seq library is unstranded, such reads might 
actually correspond to a gene being transcribed on the 
opposite strand that happens to reside within the intron of 
another gene.  RNA-seq libraries that involve polyA selection 
will generally enrich for mature mRNA sequences that have 
been completely processed.  This will lead to reduced noise 
levels within the introns.  Another strategy to reduce intron 
reads might be to perform RNA isolation in a way that 
enriches for the cytoplasmic compartment or that selects for 
RNAs being actively translated by a ribosomal complex.  
Unfortunately, these strategies tend to lead to RNA 
degradation compared to conventional RNA isolation 
procedures. 

What is a duplicate read?  
 
 

http://seqanswers.com/forums/showthread.php?t=6854 
http://sourceforge.net/p/picard/wiki/Main_Page/ 
https://www.biostars.org/p/107402/ 
 
Duplicate reads are two or more reads that are assumed to 
be derived from the same nucleotide fragment and therefore 
do not represent independent transcriptome information from 
the sample being sequenced.  Duplicate reads are identified 
by algorithms that examine position sorted BAM files.  
Typically, for paired-end read data (single-end data is also 
handled) these algorithms find the 5' coordinates and 
mapping orientations of each read pair while taking into 



account all clipping that has taking place as well as any gaps 
in the alignment.  All read pairs sharing identical 5' 
coordinates and orientations are marked as duplicates except 
the "best/first" pair.  Two commonly used tools for duplicate 
marking/removal are Picard ‘MarkDuplicates’ and samtools 
‘rmdup’.  Note: This question/answer refers to PCR 
duplicates, ‘optical duplicates’ are a distinct concept. 

Should I remove duplicates 
from RNA-seq libraries? 

https://www.biostars.org/p/14283/  
 
Generally no, but the decision to remove duplicates could be 
made on a case-by-case basis for your dataset.  Unlike in 
DNA sequencing studies, duplicate reads in an RNA-seq 
sample are much more likely to be real identical fragments of 
small RNA transcripts with high expression.  Removing these 
would bias the expression distribution of your sample and is 
not recommended [83].  However, if quantification of 
expressed transcripts is not the aim of the study, then 
removing duplicates can reduce memory usage and 
computing time for other analyses. 
 
Duplicate read removal is a standard practice in WGS and 
exome sequencing pipelines and involves the identification 
and marking of read alignments that are deemed identical to 
each other.  Duplicates are typically identified as those read 
pairs that share identical outer alignment coordinates for both 
reads of a pair (see previous answer for more details).  These 
identically mapped reads are assumed to be artifacts of PCR 
amplification derived from the same DNA fragment because 
the probability of sequencing an identical fragment of DNA 
from genomic DNA by chance is low.  While this assumption 
holds for DNA (from species with large genomes) it does not 
hold for RNA.  There is a concern that duplicates may 
correspond to biased PCR amplification of particular 
fragments, however, for highly expressed or short genes, 
duplicates are expected even if there is no amplification bias.  
Removing them will reduce the dynamic range of expression 
estimates.  Generally duplicates should therefore not be 
removed in RNA-seq analysis.  However, in some situations 
(such as mutation calling) one might decide to remove them. 

What does ‘Fragments Per 
Kilobase Of Exon Per Million 
Fragments Mapped’ (FPKM) 
mean? 

https://www.biostars.org/p/68126/ 
 
FPKM is an expression estimate that attempts to normalize 
for differences in library sequence depth between samples 
and differences in gene size between genes.  FPKM is a 
similar metric to Reads Per Kilobase of transcript per Million 
(RPKM).  However, FPKM values use the count of cDNA 
fragments, not reads.  Various sequencing platforms can 



generate single or paired end reads, introducing ambiguity in 
the mapping from reads to fragments.  FPKM values attempt 
to resolve this ambiguity by using the fragment of cDNA as 
the smallest unit.  Cufflinks is an example of a tool that 
generates FPKM values for genes and transcripts/isoforms 
[8]. 

How are individual reads 
assigned to specific 
transcripts/isoforms when 
calculating FPKM? 

https://www.biostars.org/p/16649/ 
 
The problem of assigning individual reads to specific isoforms 
or transcripts is a challenging one.  Current popular solutions 
take many inferences into account in determining isoform 
structures with read counts.  Some of the ambiguity in this 
problem can be resolved by local differences between isoform 
structures that can be mapped uniquely, but caution should 
be taken before interpreting the FPKM values for specific 
isoforms with large, complex splicing patterns.  

How do I find novel splicing 
events/transcripts? What 
tools are available for 
alternative splicing detection 
from RNA-seq data? 

https://www.biostars.org/p/68966/ 
https://www.biostars.org/p/65617/ 
 
This problem is still being actively addressed.  Separating the 
problem into subtasks can be useful.  Breaking up the 
alignment, assembly and transcript calling and quantification 
may lead to a cleaner solution, and many tools are available 
for these tasks at the links above.   

How do I obtain read counts 
for those reads that span 
across exon-exon junctions? 

https://www.biostars.org/p/73832/  
 
If alignments were produced by TopHat [84, 109], the exon-
exon junctions and read counts supporting each unique 
junction will be provided in a ‘junctions.bed’ file in the TopHat 
output directory.  More generally, one could identify 
alignments in an RNA-seq BAM file that contained CIGAR 
strings with ‘N’ operators that indicated skipped regions from 
their reference.  A subset of these skipped regions will 
correspond to introns.  These can be identified by examining 
the edges of the skipped region and using knowledge of 
splicing patterns in the sequenced species to determine 
whether it represents a likely intron splicing event.   

How do I visualize 
alternative splicing events in 
RNA-seq data? 

https://www.biostars.org/p/8979/  
 
Alternative splicing events are often visualized in genome 
browsers such as IGV [62] by observing the splice junction 
spanning reads in the read alignment track, or by loading a 
‘junctions.bed’ file that summarizes read counts supporting 
exon-exon junctions, or by using a genome browser plugin 
such as the ‘Sashimi plot’ module [65] in IGV.  Detailed 



protocols for visualizing alternative splicing in the genome 
browser IGB [64] have also been developed [58].  Additional 
options are discussed in the biostars post linked above. 

How can I generate a 
custom isoform structure 
diagram (exon/intron 
boundaries)? 

https://www.biostars.org/p/17841/ 
 
This is possible in R, Perl, or Bioperl graphics utilities.  Online 
tools exist as well.  GenomeGraphs and the ExonIntron tool 
are two such applications.  The cummerbund bioconductor 
package can also create such visualizations for isoforms 
predicted by Cufflinks in the Tuxedo suite of tools. 

How do I detect gene 
fusions in RNA-seq data?  
What tools are available? 

https://www.biostars.org/p/45986/ 
 
Gene fusions are mostly analyzed in the context of cancer 
transcriptomes, where several prominent oncogenic fusion 
proteins are well described (e.g., BCR-ABL).  Gene fusions 
are detected by identifying RNA-seq reads that indicate that 
portions of two genes (gene A - gene B) at physically 
separated genomic loci are expressed as a single unit.  Since 
transcription normally occurs as a linear event in the 5’ to 3’ 
direction along a single continuous DNA molecule, such 
fusions observed at the RNA level may imply the presence of 
a structural variation (e.g., interchromosomal translocation) at 
the DNA level.  RNA-seq reads that support a fusion are 
typically of two categories: spanning and encompassing.  A 
spanning read is one where a single read sequence matches 
for part of its length to geneA and matches geneB for the 
remainder.  The edges of these alignments to geneA and 
geneB often correspond to the edge of known exons.  An 
encompassing read is one where read 1 of a read pair 
matches geneA and read 2 of the same read pair matches 
geneB.  The details for many published fusion detection tools 
are available at the URL above. 

Where can I obtain publicly 
available RNA-seq 
datasets? 

http://www.ncbi.nlm.nih.gov/geo/  
https://www.biostars.org/p/46059/  
https://www.biostars.org/p/52866/  
http://seqanswers.com/forums/showthread.php?t=20469  
 
The largest repository of publicly available RNA-seq datasets 
is the Gene Expression Omnibus hosted by NCBI NLM.  
Other sources are discussed in the links provided above.   

Where can I find a “gold 
standard RNA-seq data set” 
for differential expression 
analysis? 

https://www.biostars.org/p/78229/ 
 
The experimental data reported in the ALEXA-seq publication 
is likely still the most in-depth validated data set publicly 
available [3].  The GEO accession for this data is GSE23776.  



This data contains ~200 differentially expressed exons 
validated by qPCR, and another ~200 alternative splicing 
structures validated by RT-PCR and Sanger sequencing.  An 
additional data set compared various RNA-seq protocols to 
qPCR data for 40 genes [264].  Projects such as BioXpress 
[284] and GTEX [285] attempt to summarize existing publicly 
available RNA-seq data. 

How do I integrate RNA-seq 
expression and gene 
regulation analyses? 

https://www.biostars.org/p/11695/  
 
While limited tools currently exist, there is great potential to 
combine whole genome or exome data generated by 
sequencing DNA with RNA-seq data generated by 
sequencing RNA from the same samples.  This will allow an 
unprecedented ability to examine the sequence relationship 
between common polymorphisms and rare mutations in the 
DNA with expression levels and splicing patterns in the RNA. 

Should I perform data 
normalization of 
gene/transcript expression 
estimates?  How?  

https://www.biostars.org/p/88751/  
 
Normalization of gene or transcript expression estimates is 
performed for a number of reasons.  Most commonly the aims 
are to ensure that (1) estimates are comparable within 
samples (e.g., comparing expression of one gene to another); 
(2) estimates are comparable between samples (e.g., 
comparing expression of a gene across experimental 
conditions) and (3) estimates are in scales or distributions 
that are convenient for interpretation and visualization.  It is 
almost always necessary to perform at least some kind of 
normalization.  The simplest methods such as transcripts per 
million (TPM) or fragments per kilobase of exon per million 
reads mapped (FPKM) attempt to control for differences in 
library depth and/or feature (e.g., gene) size with simple 
transformations.  Note that methods such as TPM only control 
for differences in feature size and thus can be used to 
compare within samples, but not between samples.  The 
FPKM method attempts to account for both feature size and 
library depth.  However, a problem with this approach is that 
the expression estimate of each gene is dependent on the 
expression levels of all other genes.  As a result, small 
expression changes between samples in highly expressed 
genes can skew the estimates for lowly expressed genes, 
creating artificial differences between samples.  Some 
methods attempt to overcome this by assuming that most 
genes are not differentially expressed and calculating a per-
sample scaling factor.  Other methods, attempt to identify a 
“control set” of consistently expressed features for 
normalization purposes or make use of “spike-in” reagents of 
known concentrations.  Still others transform read counts 



from each sample to a consistent distribution (e.g., quantile 
normalization) or use a combination of the above strategies.  
Many normalization strategies are directly incorporated into 
the differential expression methods (Cuffdiff, edgeR, DESeq, 
etc.).  No one solution is likely appropriate for all applications 
or situations.  If false positives are a major concern, 
attempting multiple approaches is desirable.  The general 
topic of RNA-seq data normalization, especially in the context 
of differential expression analysis, has been extensively 
reviewed [66-68, 95, 272, 286, 287]. 

 


